Skip to content

LeetCode: 897-Increasing Order Search Tree 解題紀錄

Last Updated on 2022-04-17 by Clay

題目

Given the root of a binary search tree, rearrange the tree in in-order so that the leftmost node in the tree is now the root of the tree, and every node has no left child and only one right child.

Example 1:

Input: root = [5,3,6,2,4,null,8,1,null,null,null,7,9]
Output: [1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]

Example 2:

Input: root = [5,1,7]
Output: [1,null,5,null,7]

Constraints:

  • The number of nodes in the given tree will be in the range [1, 100].
  • 0 <= Node.val <= 1000

題目要求將二元搜索樹BST)重新排列成一組遞增、只有右節點的樹結構,並將其回傳。


解題思路

深度優先搜索解法(DFS)

一種很直覺的方式是使用深度優先搜索法來解題。首先,我們先追尋左節點直到最深處,這會是最小值,接著將其賦值到新樹上;接著回到上一層,先將上一層的值賦予新樹的下一個右節點,再繼續使用 DFS 探索右節點…… 依序這個步驟,就能完成新樹的建立。


深度優先搜索解法(DFS)複雜度

由於我們需要遍歷整顆樹,故時間複雜度為 O(n)。而我們又重新建立了新樹,故空間複雜度同樣為 O(n)。

Time complexityO(n)
Space complexityO(n)


深度優先搜索解法(DFS)C++ 範例程式碼

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void solve(TreeNode* root, TreeNode*& newTree) {
        // Base case
        if (root == nullptr) return;
        
        // Left
        solve(root->left, newTree);
        
        // Assign
        newTree->right = new TreeNode();
        newTree = newTree->right;
        newTree->val = root->val;
        
        // Right
        solve(root->right, newTree);
    }
    
    TreeNode* increasingBST(TreeNode* root) {
        // Init
        TreeNode* newTree = new TreeNode();
        TreeNode* head = newTree;
        
        // Solve
        solve(root, newTree);
        
        return head->right;
    }
};



深度優先搜索解法(DFS)Python 範例程式碼

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:    
    def increasingBST(self, root: TreeNode) -> TreeNode:
        # Init
        newTree = TreeNode()
        head = TreeNode(0, right=newTree)
        
        # DFS
        def dfs(root: Optional[TreeNode], newTree: TreeNode) -> TreeNode:
            if root is not None:
                # Left
                newTree = dfs(root.left, newTree)
                
                # Step
                newTree.right = TreeNode(root.val)
                newTree = newTree.right
                
                # Right
                newTree = dfs(root.right, newTree)
            
            return newTree
        
        # Result
        newTree = dfs(root, newTree)
        
        return head.right.right

References


Read More

Leave a Reply