Skip to content

LeetCode: 1026. Maximum Difference Between Node and Ancestor 解題紀錄

Last Updated on 2022-12-09 by Clay

題目

Given the root of a binary tree, find the maximum value v for which there exist different nodes a and b where v = |a.val - b.val| and a is an ancestor of b.

A node a is an ancestor of b if either: any child of a is equal to b or any child of a is an ancestor of b.

Example 1:

Input: root = [8,3,10,1,6,null,14,null,null,4,7,13]
Output: 7
Explanation: We have various ancestor-node differences, some of which are given below :
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.

Example 2:

Input: root = [1,null,2,null,0,3]
Output: 3

Constraints:

  • The number of nodes in the tree is in the range [2, 5000].
  • 0 <= Node.val <= 105

題目會輸入一顆二元搜索樹(BST),然後要求我們返回節點和祖先之間最大的差距值。要注意的是,不能橫跨不同的子樹,比方說把左子樹底下的節點拿去計算跟右子樹前一層的節點去計算,這樣就不算是祖先/子代的關係了。

另一個要注意的是,我們計算的差距不局限於當前節點的『子節點』,實際上,只要是子代延伸出去的都可以去計算,比方說根節點也可以拿來計算跟第 100 層底下葉子節點的差距。


解題思路

陣列儲存當前最大、最小節點

我第一感是使用一個陣列把當前可能存在的最大、最小值儲存起來,用來計算跟當前節點的差距是否會出現最大的差距值。然後在下一層 DFS 走訪結束後,彈出當前陣列所儲存的尾端值。


複雜度

Time ComplexityO(n)
Space ComplexityO(n)


C++ 範例程式碼

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void DFS(TreeNode* root, vector<int>& maxValSeq, vector<int> minValSeq, int& maxDiff) {
        // Base case
        if (!root) {
            return;
        }

        // Update maximum difference
        maxDiff = max(maxDiff, abs(maxValSeq.back()-root->val));
        maxDiff = max(maxDiff, abs(minValSeq.back()-root->val));
        
        // Update sequence
        if (root->val > maxValSeq.back()) {
            maxValSeq.push_back(root->val);
        }
        else {
            maxValSeq.push_back(maxValSeq.back());
        }

        if (root->val < minValSeq.back()) {
            minValSeq.push_back(root->val);
        }
        else {
            minValSeq.push_back(minValSeq.back());
        }

        // DFS
        DFS(root->left, maxValSeq, minValSeq, maxDiff);
        DFS(root->right, maxValSeq, minValSeq, maxDiff);

        // Pop
        maxValSeq.pop_back();
        minValSeq.pop_back();
    }

    int maxAncestorDiff(TreeNode* root) {
        vector<int> maxValSeq({root->val});
        vector<int> minValSeq({root->val});
        int maxDiff = 0;

        DFS(root->left, maxValSeq, minValSeq, maxDiff);
        DFS(root->right, maxValSeq, minValSeq, maxDiff);

        return maxDiff;
    }
};



優化

後來我發現我並不需要建立陣列儲存當前值。如果我使用 DFS 的方式去遞迴,我可以只存當前的最大值與最小值即可。因為當前的最大值與最小值,本來就只會在當前遞迴的函式中存在,我沒有必要把陣列傳遞到下一層中。


複雜度

Time ComplexityO(n)
Space ComplexityO(1)

這樣一來,改進最多的就是不需要儲存陣列資訊,所以可以僅使用 O(1) 的空間就完成。


C++ 範例程式碼

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void DFS(TreeNode* root, int currMax, int currMin, int& maxDiff) {
        // Base case
        if (!root) {
            return;
        }

        // Update maximum difference
        maxDiff = max(maxDiff, abs(currMax-root->val));
        maxDiff = max(maxDiff, abs(currMin-root->val));
        
        // Update sequence
        currMax = max(root->val, currMax);
        currMin = min(root->val, currMin);

        // DFS
        DFS(root->left, currMax, currMin, maxDiff);
        DFS(root->right, currMax, currMin, maxDiff);
    }

    int maxAncestorDiff(TreeNode* root) {
        int maxDiff = 0;

        DFS(root->left, root->val, root->val, maxDiff);
        DFS(root->right, root->val, root->val, maxDiff);

        return maxDiff;
    }
};



Python 範例程式碼

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def DFS(self, root: Optional[TreeNode], curr_max: int, curr_min: int) -> None:
        # Base case
        if not root:
            return

        # Update
        self.max_diff = max(self.max_diff, abs(curr_max-root.val), abs(curr_min-root.val))
        curr_max = max(curr_max, root.val)
        curr_min = min(curr_min, root.val)

        # DFS
        self.DFS(root.left, curr_max, curr_min)
        self.DFS(root.right, curr_max, curr_min)

    def maxAncestorDiff(self, root: Optional[TreeNode]) -> int:
        self.max_diff = 0
        self.DFS(root.left, root.val, root.val)
        self.DFS(root.right, root.val, root.val)

        return self.max_diff

References


Read More

Leave a Reply