Skip to content

LeetCode: 124-Binary Tree Maximum Path Sum 解題紀錄

Last Updated on 2022-12-11 by Clay

題目

path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node's values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.

Example 1:

Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:

Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.

Constraints:

  • The number of nodes in the tree is in the range [1, 3 * 104].
  • -1000 <= Node.val <= 1000

題目給定一顆二元樹,我們要找到一條路徑path)且能讓該路徑上所有節點值達到最大。在這條路徑中,可以不包含根節點root)。


解題思路

DFS(深度優先搜索)

要遍歷一顆樹,最常見的方法之一就是深度優先搜索DFS)。但這題由於需要找到一條路徑(path)來讓加總值達到最大,所以需要在 DFS 的遞迴函式中做三件事:

  1. 左右節點的 DFS 函式返回值若小於 0(因為節點可能為負值,所以底下節點的加總值可能為負數),則取 0。這意味著『不走底下的路徑』來讓路徑加總值最大化
  2. 在 DFS 遞迴函式中的返回值,由於我們只能『走一條路』,所以是返回左右節點兩條路徑中加總值比較大的那條
  3. 每個遞迴式中,都要不斷更新最終的加總值,這是為了要取最大值。而這個加總值的判斷方式是 max(currMaxSum, DFS(node->left)+DFS(node->right)+node->val),實際意義就是從其中一個葉子節點都走最大路徑、通過當前節點、再走另一個方向的結點到底的最大值路徑。

詳細情況請看範例程式。


DFS 複雜度

Time ComplexityO(n)
Space ComplexityO(1)


C++ 範例程式碼

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int DFS(TreeNode* root, int& maxSum) {
        // Base case
        if (!root) {
            return 0;
        }

        int leftSum = max(0, DFS(root->left, maxSum));
        int rightSum = max(0, DFS(root->right, maxSum));

        // Take the max value
        maxSum = max(maxSum, leftSum+rightSum+root->val);

        return max(leftSum, rightSum) + root->val;
    }

    int maxPathSum(TreeNode* root) {
        int maxSum = INT_MIN;
        DFS(root, maxSum);
        return maxSum;
    }
};



Python 範例程式碼

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def DFS(self, root: Optional[TreeNode]) -> int:
        # Base case
        if not root:
            return 0
        
        left_sum = max(0, self.DFS(root.left))
        right_sum = max(0, self.DFS(root.right))

        # Take the maximum sum
        self.max_sum = max(self.max_sum, left_sum+right_sum+root.val)

        return max(left_sum, right_sum) + root.val


    def maxPathSum(self, root: Optional[TreeNode]) -> int:
        # According to `Constraints`, the minimum node value is 1,000
        self.max_sum = -1001
        self.DFS(root)
        return self.max_sum

References


Read More

Leave a Reply