Skip to content

Clay

Note Of Newton Polynomial

Newton’s interpolation is a polynomial interpolation method that constructs a set of polynomial functions using multiple data points. A major advantage is that with the addition of new data, Newton’s interpolation method does not require recalculations from scratch but can instead expand on the existing function.

Read More »Note Of Newton Polynomial

Using AutoModel.from_pretrained() In Transformers To Load Customized Model Architecture

To this day, many AI applications and open-source projects are developed based on the HuggingFace transformers package. A large number of models and packages are written to be compatible with the transformers format, and even share the same functions and methods, which makes them more widely accepted.

Under this premise, I came across an open-source training framework that conveniently wraps the automatic reading of Transformer architectures. However, one unavoidable problem is I want to use my custom model for experiments. I tried several solutions, hoping that when using AutoModel.from_pretrained(), by simply providing the local path to my model, I could successfully use my custom model architecture. This article records the method that worked.

Read More »Using AutoModel.from_pretrained() In Transformers To Load Customized Model Architecture

[Solved] RuntimeError: view size is not compatible with input tensor’s size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(…) instead.

Problem Description

When building deep learning models in PyTorch, adjusting the shapes of layers and input/output dimensions is something every AI engineer has to deal with. However, there is a small but interesting pitfall in the view() method of PyTorch:

RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
Read More »[Solved] RuntimeError: view size is not compatible with input tensor’s size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(…) instead.
Exit mobile version