[Machine Learning] softmax 函式介紹與程式實作
Last Updated on 2021-05-02 by Clay
Softmax
Softmax 函式,又被稱為『歸一化指數函數』,基本上是將一組向量(就好比說我們 Machine Learning 最後輸出的預測結果有多個分類,每個分類有著一個分數)映射為每個向量當中的元素都位於 (0, 1) 之間,其實就是代表著每個分類的機率分佈。當然,既然是機率分佈,那麼這個向量的所有元素相加總和應為 1。
Read More »[Machine Learning] softmax 函式介紹與程式實作