Last Updated on 2022-03-27 by Clay
題目
You are given an m x n
binary matrix mat
of 1
‘s (representing soldiers) and 0
‘s (representing civilians). The soldiers are positioned in front of the civilians. That is, all the 1
‘s will appear to the left of all the 0
‘s in each row.
A row i
is weaker than a row j
if one of the following is true:
- The number of soldiers in row
i
is less than the number of soldiers in rowj
. - Both rows have the same number of soldiers and
i < j
.
Return the indices of the k
weakest rows in the matrix ordered from weakest to strongest.
Example 1:
Input: mat = [[1,1,0,0,0], [1,1,1,1,0], [1,0,0,0,0], [1,1,0,0,0], [1,1,1,1,1]], k = 3 Output: [2,0,3] Explanation: The number of soldiers in each row is: - Row 0: 2 - Row 1: 4 - Row 2: 1 - Row 3: 2 - Row 4: 5 The rows ordered from weakest to strongest are [2,0,3,1,4].
Example 2:
Input: mat = [[1,0,0,0], [1,1,1,1], [1,0,0,0], [1,0,0,0]], k = 2 Output: [0,2] Explanation: The number of soldiers in each row is: - Row 0: 1 - Row 1: 4 - Row 2: 1 - Row 3: 1 The rows ordered from weakest to strongest are [0,2,3,1].
Constraints:
m == mat.length
n == mat[i].length
2 <= n, m <= 100
1 <= k <= m
matrix[i][j]
is either 0 or 1.
輸入一個列表,列表中存在著 1 跟 0 等數值,其中 1 出現的次數越多代表越強、而當 1 出現的次數相同時,越早出現的列表越弱(假設第一行跟第三行的 1 數量皆為二,那第一行比第三行更弱)。
我們還對得到一個 k
值,代表著我們要返回的最弱行號數量。
簡單來講就是從弱到強排序,並返回前 k 個行號。
解題思路
排序法
這題我的第一感就是使用排序法來解。排序的單位是一組陣列,第一個元素代表著『1 的數量』、第二個元素代表著『行號』。
而預設的 sort()
函式,在我所用於解題的 C++ 和 Python 語言當中,都是先按照第一個元素排序、若第一個元素相同則按照第二個元素排序 —— 剛好完美符合我的需求。
最後,則返回前 k 個元素的行號即可。
排序法複雜度
由於需要經過排序,故時間複雜度為 n log(n)。然後由於要儲存跟輸入列表同等長度的『 1 的數量』跟『行號』,空間複雜度自然也是 O(n)。
Time complexity | O(n log n) |
Space complexity | O(n) |
排序法 C++ 範例程式碼
class Solution {
public:
vector<int> kWeakestRows(vector<vector<int>>& mat, int k) {
// Init
vector<pair<int, int>> v;
// Count
for (int i=0; i<mat.size(); ++i) {
int temp = std::accumulate(mat[i].begin(), mat[i].end(), 0);
v.push_back(pair{temp, i});
}
// Sort
sort(v.begin(), v.end());
// Pop
while (v.size() > k) {
v.pop_back();
}
// Return
vector<int> results;
for (int i=0; i<v.size(); ++i) {
results.push_back(v[i].second);
}
return results;
}
};
排序法 Python 範例程式碼
class Solution:
def kWeakestRows(self, mat: List[List[int]], k: int) -> List[int]:
# Init
v = []
# Count
for i in range(len(mat)):
v.append([sum(mat[i]), i])
# Sort
v.sort()
# Pop
v = v[:k]
# Return
v = [item[1] for item in v]
return v;