Skip to content

LeetCode: 1962-Remove Stones to Minimize the Total 解題紀錄

Last Updated on 2022-12-30 by Clay

題目

You are given a 0-indexed integer array piles, where piles[i] represents the number of stones in the ith pile, and an integer k. You should apply the following operation exactly k times:

  • Choose any piles[i] and remove floor(piles[i] / 2) stones from it.

Notice that you can apply the operation on the same pile more than once.

Return the minimum possible total number of stones remaining after applying the k operations.

floor(x) is the greatest integer that is smaller than or equal to x (i.e., rounds x down).

Example 1:

Input: piles = [5,4,9], k = 2
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [5,4,5].
- Apply the operation on pile 0. The resulting piles are [3,4,5].
The total number of stones in [3,4,5] is 12.

Example 2:

Input: piles = [4,3,6,7], k = 3
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [4,3,3,7].
- Apply the operation on pile 3. The resulting piles are [4,3,3,4].
- Apply the operation on pile 0. The resulting piles are [2,3,3,4].
The total number of stones in [2,3,3,4] is 12.

Constraints:

  • 1 <= piles.length <= 105
  • 1 <= piles[i] <= 104
  • 1 <= k <= 105

解題思路

優先權佇列(Priority Queue)

首先先把 piles 中的所有值加總,得到當前所有的石頭總數;接著使用優先權佇列(priority queue)來儲存每個 pile 中石頭的數量。如此一來,我們就能直接取得當前最多石頭的 pile,倒去一半,再把剩餘的部分重新儲存回優先權佇列中。

同時,我們也要把倒去的一半石頭數量,從 piles 加總的值中減去。這樣一來當我們能操作次數 k 值歸零後,我們就能馬上得到答案。


優先權佇列(Priority Queue) 複雜度

Time ComplexityO(n)
Space ComplexityO(n)


C++ 範例程式碼

class Solution {
public:
    int minStoneSum(vector<int>& piles, int k) {
        // Init
        int stoneSum = accumulate(piles.begin(), piles.end(), 0);
        priority_queue<int> pq(piles.begin(), piles.end());

        // Remove stones
        while (pq.top() != 0 && k > 0) {
            int removeStone = floor(pq.top() / 2);
            int remainStone = pq.top() - removeStone;
            pq.pop();
            pq.push(remainStone);
            stoneSum -= removeStone;
            --k;
        }

        return stoneSum;
    }
};




References


Read More

Leave a Reply取消回覆

Exit mobile version