Skip to content

LeetCode: 797-All Paths From Source to Target 解題紀錄

Last Updated on 2022-12-31 by Clay

題目

Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n - 1, find all possible paths from node 0 to node n - 1 and return them in any order.

The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).

Example 1:

Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.

Example 2:

Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

Constraints:

  • n == graph.length
  • 2 <= n <= 15
  • 0 <= graph[i][j] < n
  • graph[i][j] != i (i.e., there will be no self-loops).
  • All the elements of graph[i] are unique.
  • The input graph is guaranteed to be a DAG.

題目給定一個有向圖,我們要找出所有從 0 到終點的路徑並回傳。


解題思路

DFS

像這種需要走到終點的題目,第一感就是使用深度優先搜索來解題。在走向每一次新的遞迴時,都要把當前路徑記錄下來;當此輪遞迴結束後,要把當前節點從當前路徑中彈出,才不會在更外一層的遞迴時參雜了錯誤的節點。

詳情還請看程式碼。


C++ 範例程式碼

class Solution {
public:
    void DFS(vector<vector<int>>& graph, vector<vector<int>>& paths, vector<int>& path, int vertex) {
        path.emplace_back(vertex);

        if (vertex == graph.size() - 1) {
            paths.emplace_back(path);
        } 
        else {
            for (int v: graph[vertex]) {
                DFS(graph, paths, path, v);
            }
        }

        path.pop_back();
    }

    vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
        // Init
        vector<vector<int>> paths;
        vector<int> path;

        // Finding
        DFS(graph, paths, path, 0);

        return paths;
    }
};



Python 範例程式碼

class Solution:
    def DFS(self, graph: List[List[int]], paths: List[List[int]], path: List[int], vertex: int) -> None:
        path.append(vertex)

        if vertex == len(graph) - 1:
            paths.append(path.copy())
        else:
            for v in graph[vertex]:
                self.DFS(graph, paths, path, v)

        path.pop()

    def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]:
        # Init
        paths: List[List[int]] = []
        path: List[int] = []

        # Finding
        self.DFS(graph, paths, path, 0)

        return paths




References


Read More

Leave a Reply取消回覆

Exit mobile version