[PyTorch] 將模型刪除後,釋放 GPU / CPU 的記憶體空間
問題描述
昨晚,我在改進一段將模型融合的程式碼時,由於個人設備資源不足,我採取分層合併的方法,一次只取一層的記憶體進行合併,以此減少系統同時保存的模型記憶體大小。然而,我發現模型雖然在 GPU 中的記憶體很容易被刪除、但是 CPU 中的記憶體被回收是十分不容易的。這涉及到了 Python 的資源回收器的設計。
Read More »[PyTorch] 將模型刪除後,釋放 GPU / CPU 的記憶體空間昨晚,我在改進一段將模型融合的程式碼時,由於個人設備資源不足,我採取分層合併的方法,一次只取一層的記憶體進行合併,以此減少系統同時保存的模型記憶體大小。然而,我發現模型雖然在 GPU 中的記憶體很容易被刪除、但是 CPU 中的記憶體被回收是十分不容易的。這涉及到了 Python 的資源回收器的設計。
Read More »[PyTorch] 將模型刪除後,釋放 GPU / CPU 的記憶體空間vLLM 是加州柏克萊分校所開發的一種大型語言模型(Large Language Model, LLM)加速推理框架。它主要是利用 PagedAttention 機制提高了 GPU VRAM 的使用率,並且這一方法無須更改模型的架構。
Read More »使用 vLLM 進行大型語言模型(LLM)的高速推理在 2023 年初,PyTorch 的 2.0 版本新增了一個 torch.compile()
的新功能,讓我們能夠在模型訓練/推理時能夠進一步提昇速度。與混合精度訓練的協同工作,經常能使我的訓練速度提昇一倍左右。
變分自動編碼器(Variational AutoEncoder, VAE) 是自動編碼器(AutoEncoder, AE)的進階變體,架構與原本的自動編碼器相似,同樣都是由編碼器(Encoder)和解碼器(Decoder)所組成。
Read More »[Machine Learning] Variational AutoEncoder (VAE) 筆記最近在因緣際會下,有了簡單改一些模型架構的機會,於是便趁這個機會好好地摸索了下 PyTorch 中模型神經網路層的遍歷打印方式。
Read More »[PyTorch] 遍歷模型每一層神經網路筆記今天當我透過 simpletransformers 套件訓練模型時,我得到了一個我之前沒碰過的警告訊息:
Read More »[已解決] huggingface/tokenizers: The current process just got forked. after parallelism has already been used. Disabling parallelism to avoid deadlocksT5 ,全名是 Transfer Learning with a Unified Text-to-Text Transformer,在 2019 年底提出、隔年 2020 年則在 GLUE 上成為榜首,成功擠下了自家的 ALBERT。
Read More »[Machine Learning] T5 預訓練模型學習筆記最近我的某項工作就是把之前的舊專案使用 PyTorch Lightning 重構成新的訓練環節,並確保分數並沒有太大變化。其中,在我將某項二分類專案重構後,試跑出現了以下錯誤:
Read More »[已解決] RuntimeError: CUDA error: device kernel image is invalid - CUDA kernel errors might be asynchronously reported at some other API call...PyTorch Lightning 是把原生 PyTorch 封裝得更高級的框架套件,就像是 Keras 之於 Tensorflow 一樣(雖然 Keras 能支援的後端我記得是不少的)。
Read More »[PyTorch] pytorch-lightning 套件介紹我一直以來都希望能夠保存 PyTorch 訓練模型時所使用的優化器(optimizer),以便能夠在模型結束訓練之後,繼續往下訓練;一般來說,如果是要做遷移學習、微調模型(fine-tune),那麼並不需要特別將上一次訓練的優化器保存下來。
Read More »[PyTorch] 保存優化器(optimizer)來接續訓練模型