Skip to content

Machine Learning

使用 HuggingFace `transformers` 套件中模型的 `assistant_model` 方法來進行 Speculative Decoding 的加速

最近嘗試實作了許多推測性解碼(Speculative Decoding)的加速方法,而 HuggingFace 的 transformers 套件中自然也有對應的加速方法 assistant_model,今天就趁這個機會一起紀錄下來。

Read More »使用 HuggingFace `transformers` 套件中模型的 `assistant_model` 方法來進行 Speculative Decoding 的加速

Self-Speculative Decoding 完整實作: LayerSkip Model, Bayesian Optimization, and Adaptive Draft-Exiting Mechanism(附 gemma-2-9b-it 實驗結果)

在過去的一週裡,我抽空按照論文 Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding 的思路嘗試復現了一遍自推測性解碼Self-Speculative Decoding),包含以下模組:

  • 跳層解碼的 Decoder-only Transformer 模型(主要以 Llama 和 Gemma-2 兩種架構為主)
  • 自適應草稿離開機制
  • 貝氏優化探索最佳跳層策略(尋找怎樣的搭配才會是最好的草稿模型)
  • Self-Speculative Decoding —— 完成只靠模型自身的加速
Read More »Self-Speculative Decoding 完整實作: LayerSkip Model, Bayesian Optimization, and Adaptive Draft-Exiting Mechanism(附 gemma-2-9b-it 實驗結果)

[論文閱讀] Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding

本篇論文重點

  • 量化、剪枝、蒸餾同樣可以加速,但得面對與原始模型不同的輸出分佈、重新訓練的開銷等等問題
  • 原先的 Speculative Decoding 面對的問題則為我們需要使用額外的記憶體空間去驅動 draft model(草稿模型),而 Self-Speculative Decoding 僅使用了自身部份神經網路作為 draft model
  • 自適應草稿脫離機制(Adaptive Draft-Exiting Mechanism)可以基於自動調整信心分數閾值來自動調整草稿模型的推測 tokens 數量
Read More »[論文閱讀] Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding

透過貝氏優化去搜索 LayerSkip 模型的最佳跳層策略

在自推測性解碼(Self-Speculative Decoding)中,由於我們的 draft model 是由 target model 的部份網路擔任,所以找到一個好的『跳層策略』(Layer Skip Strategy)是非常重要的事情 —— 我們不僅要跳得夠多層讓加速真正意義上實現、也需要讓 draft model 的推測解碼程度足夠好且不容易被 target model 驗證時拒絕。

所以今天的實作,就是靠貝氏優化框架 Optuna 來優化我之前的實現的 LayerSkip 模型,決定到底要跳哪幾層。

Read More »透過貝氏優化去搜索 LayerSkip 模型的最佳跳層策略

Self-Speculative Decoding 實現: 跳層 Transformer 模型實作筆記

介紹

自推測性解碼(Self-Speculative Decoding)是一個推測性解碼(Speculative Decoding)的變體。原本的 Speculative Decoding 是採用一個草稿模型(draft model)來優化我們真正想要推理的目標模型(target),並且 draft model 擁有與 target model 相似的輸出以及快上幾倍的推理時間,通常是由 target model 蒸餾而來。

Read More »Self-Speculative Decoding 實現: 跳層 Transformer 模型實作筆記

推測性解碼(Speculative Decoding)實作筆記(附簡易實驗結果)

介紹

推測性解碼(Speculative Decoding)是一種實用性極強的加速推理技巧,通過讓小模型(draft model)快速、連續地解碼多個 Tokens 並保留過程中的採樣機率分佈,並讓我們真正希望加速的大模型(target model)在此之上預測下一個 Token —— 同時把過往的每個 Token 位置的採樣機率分佈一次性地計算得出,再透過 target model probs 去驗證 draft model probs 的有效性,並接受足夠可靠的 draft model 的推測解碼 Tokens。

Read More »推測性解碼(Speculative Decoding)實作筆記(附簡易實驗結果)

大型語言模型的解碼採樣筆記

我們在利用大型語言模型進行生成任務時,尤其是自迴歸任務(Auto-regression),模型實際上是在做一個好幾萬的分類任務,而分類的標的,其實就是我們詞庫(vocabulary)中的詞,通常是被稱為詞元(Token),也就是組成詞彙的最小單位。

如果我們希望採用貪婪解碼(greedy decoding),那麼我們永遠取模型最後一層解碼層的 logits 最大值就完事;但如果我們希望模型的生成結果具備多樣性與一定程度的隨機性,那麼,我們就有了許多的參數可以用來調整 logits 成為機率分佈了。

Read More »大型語言模型的解碼採樣筆記

使用有限狀態機(FSM)和回滾(Rollback)機制控制 LLM 禁止生成禁止詞彙(Banned-Words)

在大家透過 LLM 架設各種服務時,是否會煩惱 LLM 經常生成一些不受控制的言論?最近我的工作正在專案收尾的緊要關頭,我使用了 Outlines 等工具用以約束 LLM 解碼,確實能控制模型生成符合我想項中的模式 —— 但我同事突然對我發出靈魂一問:那我想要它不生成某些詞彙該怎麼辦?

Read More »使用有限狀態機(FSM)和回滾(Rollback)機制控制 LLM 禁止生成禁止詞彙(Banned-Words)
Exit mobile version