使用 HuggingFace `transformers` 套件中模型的 `assistant_model` 方法來進行 Speculative Decoding 的加速
最近嘗試實作了許多推測性解碼(Speculative Decoding)的加速方法,而 HuggingFace 的 transformers
套件中自然也有對應的加速方法 assistant_model
,今天就趁這個機會一起紀錄下來。
最近嘗試實作了許多推測性解碼(Speculative Decoding)的加速方法,而 HuggingFace 的 transformers
套件中自然也有對應的加速方法 assistant_model
,今天就趁這個機會一起紀錄下來。
在過去的一週裡,我抽空按照論文 Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding 的思路嘗試復現了一遍自推測性解碼(Self-Speculative Decoding),包含以下模組:
在自推測性解碼(Self-Speculative Decoding)中,由於我們的 draft model 是由 target model 的部份網路擔任,所以找到一個好的『跳層策略』(Layer Skip Strategy)是非常重要的事情 —— 我們不僅要跳得夠多層讓加速真正意義上實現、也需要讓 draft model 的推測解碼程度足夠好且不容易被 target model 驗證時拒絕。
所以今天的實作,就是靠貝氏優化框架 Optuna 來優化我之前的實現的 LayerSkip 模型,決定到底要跳哪幾層。
Read More »透過貝氏優化去搜索 LayerSkip 模型的最佳跳層策略自推測性解碼(Self-Speculative Decoding)是一個推測性解碼(Speculative Decoding)的變體。原本的 Speculative Decoding 是採用一個草稿模型(draft model)來優化我們真正想要推理的目標模型(target),並且 draft model 擁有與 target model 相似的輸出以及快上幾倍的推理時間,通常是由 target model 蒸餾而來。
Read More »Self-Speculative Decoding 實現: 跳層 Transformer 模型實作筆記在自迴歸模型(Auto-regressive Model)解碼時,如果需要解碼 K 個詞元(Tokens),則需要跑 K 次流程,而這正是當前大型語言模型的推理時間瓶頸所在。
Read More »[論文閱讀] Fast Inference from Transformers via Speculative Decoding在大型語言模型的解碼過程中,尤其是自迴歸模型(Auto-regressive model),勢必得一次次地解碼直到生成整個序列為止,在這之中存在著一些 cache 的技巧,能夠幫助模型減少計算量、提昇解碼速度;而這個技巧就被稱為 KV Cache。
Read More »KV Cache: 一種加速 Transformer 模型生成速度的暫存機制在大家透過 LLM 架設各種服務時,是否會煩惱 LLM 經常生成一些不受控制的言論?最近我的工作正在專案收尾的緊要關頭,我使用了 Outlines 等工具用以約束 LLM 解碼,確實能控制模型生成符合我想項中的模式 —— 但我同事突然對我發出靈魂一問:那我想要它不生成某些詞彙該怎麼辦?
Read More »使用有限狀態機(FSM)和回滾(Rollback)機制控制 LLM 禁止生成禁止詞彙(Banned-Words)一直以來,我都只用個大概的公式去推估我的模型量級與我的 GPU VRAM 開銷之間關聯;畢竟這之間牽扯到的變數實在太多了,光是模型架構、層數、注意力機制實現、序列長度、Batch Size、訓練或推理採用的資料精度... 在在都影響我們最後計算的結果。
Read More »訓練、推理 AI 模型的 VRAM 開銷計算筆記今天我在吃飯時看到了一部影片(影片附於文末),影片中不像現在很多衝著 AI 這種新穎技術的科技頻道,一上來就把 AI、經濟、取代人類等等議題一股腦地拋出來;而是仔細地,講解了從以前到現在,硬體的規格如何影響演算法(或者稱 AI 模型架構)。
Read More »一點思考:Transformer 在未來是否會被取代?