Skip to content

Clay

學習知識究竟為什麼會遺忘:何為遺忘曲線?

前言

一直以來,我都努力讓自己保持著學習的狀態,雖然有時會因為工作的忙碌、朋友的邀約...... 導致當天回家後只感到疲累,玩了會兒 PS5 就草草洗澡上床睡覺。這樣的日子雖然輕鬆又愜意,但內心深處總擔心著不經常學習反而會遺忘自己學習過的知識,就像那句老話「學如逆水行舟,不進則退」。

Read More »學習知識究竟為什麼會遺忘:何為遺忘曲線?

整合 Speculative Decoding 和 KV Cache 之實作筆記

前言

Speculative Decoding 和 KV Cache 都是 Transformers 可以應用的加速技巧;前者是利用一個推理速度較快的 draft model 推測性地生成多個後續的解碼結果並讓希望加速的 target model 進行一次性驗證藉此節省自迴歸解碼的開銷,後者則是應用了 Transformer 因果注意力(Causal Attention)機制中過往 Token 不會看到未來的 Token 的特性,將過去部份 Token 的計算結果保存下來,節省了每次推理時的重複計算。

Read More »整合 Speculative Decoding 和 KV Cache 之實作筆記

Speculative Decoding 時採用目標模型(Target Model)的信心閾值來決定是否啟用草稿推測

目前我看的許多加速推理技巧,如 Speculative Decoding 等等方式,大多數都是採用把 draft model 信心分數設定一個閾值(threshold)來決定現在要解碼多少個 draft tokens、再交由 target model 進行驗證,以此來減少 draft model 在低信心程度的情況下額外多推測的時間開銷。

Read More »Speculative Decoding 時採用目標模型(Target Model)的信心閾值來決定是否啟用草稿推測

使用 HuggingFace `transformers` 套件中模型的 `assistant_model` 方法來進行 Speculative Decoding 的加速

最近嘗試實作了許多推測性解碼(Speculative Decoding)的加速方法,而 HuggingFace 的 transformers 套件中自然也有對應的加速方法 assistant_model,今天就趁這個機會一起紀錄下來。

Read More »使用 HuggingFace `transformers` 套件中模型的 `assistant_model` 方法來進行 Speculative Decoding 的加速